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Abstract We establish the existence of positive solutions for the second order singu-
lar semipositone coupled Dirichlet systems

x4 fi(t, y(0) +er(t) =0,
Y'+ f2(t. x(1)) + ea(t) =0,
x(0)=x(1)=0, y(0) =y(1) =0.

The proof relies on Schauder’s fixed point theorem.
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2 Z. Cao et al.

1 Introduction

In this paper, we study the existence of positive solutions for the second order singular
semipositone coupled differential systems

X"+ fi(t, y(@®) +e1(1) =0,
Y+ fa(t,x@) + ex(t) =0, (1.1)
x(0) =x(1) =0, y(0)=y(1) =0.

Here e1,er € C[0, 1], f1, f2 € C([0, 1] x (0, +00), (0, +00)) and may be singu-
lar near the zero. A solution of (1.1) is a pair (x(¢), y(t)) of continuous func-
tions on [0,1], twice differentiable on (0,1), with x(¢), y(r) > 0 for 0 <1t < 1
and x(0) = x(1) = y(0) = y(1) = 0 such that x”(t) + f1(¢, y(t)) + e1(t) =0 and
')+ fot, x(t)) +ex(r) =0forall t € (0, 1).

There has been increasing interest in the subject of singular differential equations
due to its strong application background, and consequently, a number of theoretical
results for the solution of various types of singular differential equations have been
developed, we refer the reader to [1-11] and the references therein. Boundary value
problems of singular differential systems have been studied extensively by many au-
thors over the last two decades [2—11]. In [4—10], the authors establish the conditions
for the existence of positive solutions of a singular boundary value problem with
second-order differential systems.

In [12, 13], Cao, Jiang et al. establish the existence of periodic solutions for the
second order non-autonomous singular coupled systems

x"+art)x = fi(t, y(@©) +e1(0),
Y +ayt)y = fot, x(1)) + ex(t).

The proof relies on Schauder’s fixed point theorem. Some recent results in the litera-
ture are generalized and improved.

In [10], Zhang et al. consider with a nonlinear singular coupled differential system
with four-point boundary conditions

—x"= [t y@)),

=y =g, x(1),

ax(0) — Bx'(0) = 8x(1) + yx'(1) =0,

y(0) =ay&), y(1) =by(52),
where 0 < & < & < 1;a, 8, Y, 8, a, b are nonnegative constants such that p = 8y +
ay 4+ ad > 0. By using Schauder fixed point theorem, and established a necessary

and sufficient condition for the existence of positive solutions.
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Positive solutions to singular semipositone boundary value problems 3

In [11], by employing a fixed point index theorem, Zhang et al. study the existence
of positive solutions for a singular semipositone coupled differential system

—x" = f{t,y®) +q(),

-y =g(t, x(1)),

x(0)=x(1)=0,

ay(0) — By (0) =8y(1) + yy'(1) =0,

where «, 8, y, § are nonnegative constants such that p = 8y +ay + aé > 0. A new
existence of positive solutions result is established.

Motivated by the work of the above papers, the aim of this paper is to establish
some simple criteria for the existence of positive solution to Dirichlet BVP of the
singular semipositone coupled differential systems (1.1).

The remaining part of the article is organized as follows. In section “preliminar-
ies”, some preliminary results will be given. In the remaining sections, by employing
a basic application of Schauder’s fixed point theorem, we state and prove the exis-
tence results for (1.1). Our view point sheds some new light on problems with weak
force potentials and prove that in some situations weak singularities may stimulate
the existence of positive solutions.

2 Preliminaries
Let us fix some notation to be used in the following: Given a € L! 0, 1), we write a >

Oifa >0 forae.r €[0, 1] and it is positive in a set of positive measure.
It is known that the systems (1.1) is equal to integral equations systems

1
x(0) = /0 Gt 5)(fi (5, () + er(5))ds,

1
y(1) = / G(t,5)(f2(s, x(5)) + e2(s))ds,
0
where the Green’s function is

t(l—s), 0<t<s<
0<s<t<

G(t,s)= {s(l 9

and G (t, s) is satisfied the property:

Lemma 2.1 G(¢,s):[0,1] x [0, 1] — [0, +00) is continuous and t (1 —t)s(1 —s) <
G(t,s) <t(l—1t),forallt €]0,1],s €[0, 1].

We define the function y; : [0, 1] = R by
1
vi(t) = / G(t,8)e; (s)ds, i=1,2,
0
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4 Z. Cao et al.

which is the unique solution of

—w" =¢ (1),
w(0) = w(1) =0.

Here
1
)] st(l—r)/o les(s)]ds.

Let us fix some notation to be used in the following: Given function y € L! [0, 1],
we denote the supremum and infimum by

i (1)

x vi(t) .
n s
te@,)t(1—1)

y; = sup and Y=
' re ) 1(1 —1) -

there
. yi (1) yi(0)
< 1m < sup
1e@D (1 —1) = ey t(1—1)

<0

3 The case y15 >0, 2, >0

Theorem 3.1 Assume that there exists b; > 0, l;i >=0and 0 < «; < 1 such that

(Hp)

S

i (t b;(t
I(A)ffi(t,x)f l((r), forallx >0,a.e.t €(0,1),i=1,2.

x% XY

0<

(Ho)

1
/ bi(s)[s(1 —5)] “ds <oo, i=12.
0
If Y1+ = 0, v2i > 0, then there exists a positive solution of (1.1).

Proof A solution of (1.1) is just a fixed point of the completely continuous map
A(x,y)=(A1x,Azy): C[0, 1] x C[0, 1] — C[0, 1] x C[0, 1] defined as

1
(A1x)(1) = /0 G(t. )| f1(s. y(5)) +e1(s)]ds
1
=/0 G(t,9) fi(s, y(s))ds + 1 (1);
1
(A2y)(1) 1=/0 G(t, )| fa(s. x(5)) + ea(s) ]ds

ol La ZJI_ELI

f2(s. x(5))ds + y2(1).
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By a direct application of Schauder’s fixed point theorem, the proof is finished if
we prove that A maps the closed convex set defined as

K = {(x,y) eC[0,1] x C[0, 1] :rt(1 — 1) <x(t) < Rit(1 — 1),
rt(1—1) < y(t) < Ryt (1 — 1)},

and A : K — K is continuous and compact, where R| > r; > 0, Ry > r, > 0 are
positive constants to be fixed properly. For convenience, we introduce the following

notations
ﬂ(t)—/lG(t —2) g
I T )}
A 1 l;,-(s) .
,31'(1‘)—‘/0 G(l,s)mds, l—1,2,
N 10 v Bi(t)
b= M i P "ot —1)
10 . Bi (1)
o= o ta—ny  P=0 oy

Given (x, y) € K, by the nonnegative sign of G and f;, i = 1, 2, we have
1
(A1x)(1) =/0 G(t,9) fi(s, y(8))ds +y1(1)

1 .
> / Gt,s) ball(s) ds
0 yei(s)

1 ~
2/ G(t,s)# )
0 Ry [s(1 —s)]*

~ 1
=ﬂ1(t)R_gl
> Bra - — [t = D).
R

and note for every (x,y) € K

1
(Alx)(t)=/0 G(t,5) fi(s, y(s))ds + y1 (1)

1
< / G(t,s) bi(s) ds+y{[t(1—1)]
0

yeL(s)

. ()

st vt =)
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6
1! b1 (s) .
- réTlfo G T il =
1 k *
< (=B +yf [t —0)]
)

1
= [TlﬂHyl*][t(l -n].
)

Also, following the same strategy, we have

1
(A2y)(1) =f0 G(t,5) fo(s, x(5))ds + y2(t)

ba(s)
G
zfo (19) 2 s

! by (s)
2/0 G R =

252*-W[t(1—t)],

1

1
(A2y)(1) = /0 G(t,5) f2(s, x(5))ds + y2()

1
5/ G(t,s) j()d +r[a=n]
0 2(s)

1
5/ G52 s sl -

[ris(l —s)]*2

= ﬁz(t)rTz +y [ =]

I:IBZ az +V2i|[t(1_t)]‘

Thus (A1x, Ayy) € K if r1, 2, Ry and R; are chosen so that

. >r ﬂ*i+ *¥< R
Rotl =T, 1 o] Vi = I,
2 )

B 'TZ+}/2*5R2-

1]

D]
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Note that ,31-*, Bix >0andtaking R=R| =Ry, r=r1=nr,r= %, it is sufficient to
find R > 1 such that

Bre-R'7" =1,  BF-RY 4y} <R,

Bos-R'"™>1,  BF-R™ 4y <R,

and these inequalities hold for R big enough because «; < 1.
Next we will show that A : K — K is continuous and compact. Let x,, xg €
K with

X — xoll =0, lyn = yoll = 0

as n — oo. Here || - || is the norm of C[0, 1]. Also notice that
pin = |fi(t. ya®) = f1(t. yo(®))| >0,
oo = | f2(t, xa () = fo(t. x0(1))| = O,
asn — oo,t € (0, 1), and

pin < fi(t, ya@®) + f1(t, y0®), 1€ (0,1);
P < fo(t. 20 (D) + f2(t, x0(1)), 1€ (0,1).

Here
fi(t ya @) < yb;l((tt)) < [tl()i(i)t)]al, t €0, 1);
fi(tyo®) < ybgl((?) <m [tl(’i(i)t)]al, re,1);
fo(t, % (1)) < )2,32((?) < r?[tlg(i)z)]az’ 1€, 1):
ft,xo®) < b) b0 te,1).

X (0 T Pl - o)’

These together with the Lebesgue dominated convergence theorem guarantee that

1
A1x, — A1xoll < sup / G(t,s)p1n(s)ds — 0,
1€[0,11J0

1
A2y, — A2yoll < sup / G(t,5)p2n(s)ds — 0,
1e10,11J0

asn — 00. So, A : K — K is continuous.
e and obviously K is bounded, so A(K) is
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8 Z. Cao et al.

Let

5= min{ €
ry " fo biIs(L— )= ds + [ ler(s)lds

€
% [ ba(s)[s(1 = s)]=22ds + [ lea(s)|ds }

then for any € > 0, ¢,¢' € [0, 1], |t — t'| < J, we have
€

ry ! fo biIs(1 = $)I=1ds + [ ler(s)lds’
€

% [y b5l — $)]2ds + [, lex(s)lds

|G@t,9)—G(t',s)| < |t —1| <

|G@t,9)—G(t',s)| < |t —1| <

Thus we have

(A1) () — (A (1')]

1
/0 (G, s) = G(',9)][ fi(s. () + e1(s)]ds

1
< /0 1G5 = G )| (52 () + €1 ()]s

1 , 1
S‘/(; |[G(t,s)—G(t,s)]||:b1(s)m+|el(s)|]ds
<€,

|[(A2y) (1) = (Aay)(1')]

1
/0 (G, s) = G('.9)][ f(s. x(8)) + ea(s)]ds

1
< /0 1[G (t.5) = G (" )][|[ a5 x(5)) + ea(s)]|ds

1 , 1
S/(; |[G(t,s)—G(t,s)]||:b2(s)m+|ez(s)|]ds

<E€.

Then the Arzela—Ascoli theorem guarantees that A : K — K is compact. O

4 The case y <0, y; <0

L)

he presence of a weak nonlinearity makes it
vy <0.
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Theorem 4.1 There exist b;, l;,- >0and 0 < o; < 1, such that (Hy) and (Hy) are
satisfied. If y| <0, yy <0, and

N 1
Bix a2 1
> . 1— ,
Vix = I:(xlolz (B ajan

1
o }‘“1“2( 1 )
> |lajon - 1——),
yz*_[ 1 (B))*®2 ar0n

then there exists a positive solution of (1.1).

4.1

Proof In this case, to prove that A : K — K, it is sufficient to find 0 < r; < Ry,
0 < rp < Ry such that

Bi BY
gor TV G SR 4.2)

2 2

ﬂZ* /3;
+ b S2 <R, 43
R(112 yz* = rixz 2 ( )

If we fix R = lel, Ry = %, then the first inequality of (4.3) holds if r, satisfies
2 1

5 —a
Box(BY) 23" + you = 12,

or equivalently

32* 0{1(12
> =
V2x = 8(r2) :=r2 — TRE r,
The function g(r;) possesses a minimum at
N 1
[ ﬂz* } I—ajay
o = |a1ay - .
(B1)*2

Taking rp = o9, then (4.3) holds if

_ ) ,32* Ty alaz _ L
Vz*Zg(Vzo)—[al"‘Z (ﬂl)az] (1 011052>'

Similarly,

ﬁl* 011(12

B3 A

Vis = h(r) =r1 —

h(r1) possesses a minimum at

N 1
ps Jom
B3 ’
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10 Z. Cao et al.

N 1
Bix |Tax 1
> . 1——).
Vix = |:ouoc2 BHm oo

Taking r1 = r19, 2 = 20, then the first inequalities in (4.2) and (4.3) hold if yp, >
g(r1) and y», > g(rp), which are just condition (4.2). The second inequalities hold

directly from the choice of R and Rj, so it remains to prove that R} = ﬁTll > 710,
20

#
Ry = ﬂszz > ry0. This is easily verified through elementary computations:

10
* *
R - e
20 . *_";t T—ajap 1o
{lare - 557 ] }
gy
pi _ptree
N L &
loraz - (ﬂl?‘z)ﬁ"z]l_"‘“2 (@102 - foy) 712
1 :
(By) o1 B |: B }W
- A 1 - ~
[(aroz - P )r] -1 (@102 - fos)™t
* ara 3 =
! Ai e Bix |Tux
- o B > o =10,
(@1)® (B B
since B < Bf, i = 1,2. Similarly, we have Ry > ra. .

5 The case y1. >0,y <0 (y;f <0, 2, > 0)

Theorem 5.1 Assume (Hy) and (Hy) are satisfied. If y1, > 0, y; <0 and

[LI1°%)

~ r21
>y — —_— 5.1
V2 =121 — Pox (ﬁf yf‘ré'f)“z S.D

where 0 < ry1 < +00 is a unique positive solution of the equation

14an

ry B ) T = o, (5:2)

then there exists a positive solution of (1.1).

Proof We follow the same strategy and notation as in the proof of ahead theorem. In
this case, to prove that A : K — K, it is sufficient to find r; < Ry, r2 < Rj such that

*

P >y, '3722 <R. (5.3)
Ty
ﬁ*
rTll +y <R 54

2
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If we fix Ry = 0,2 , then the first inequality of (5.3) holds if r; satisfies

S, (55)
2
or equivalently
A 1
T=ara;
0<r15[(£‘)"a1] " (5.6)
2
If we chose r; >0 small enough, then (5.6) holds, and R» is big enough.
If we fix R; = 0,1 + y; then the first inequality of (5.4) holds if r; satisfies
2
Vox Z 12 — R?z
A 1
=r—fu —F———
( + Y1 )2
=r — /§2 T e
i ('Bl "':;11"21 Y2
2
R ry'
=1 =P o ara
P B
or equivalently
. ot
V2x = f(r2) i==r2 — Pox - m (5.7)
According to
. 1 1
flr) =1—= By Gy oo T (B vyt rst)
_r;‘IU‘Zaz(ﬂik + Vl* ,r;ﬁ)az— o yl*rzal 1]
L Py [ N5y ]
(:31+V1 ’21)a2 ﬂf*‘yl*‘rzal
=1 =@ By T (BT + v rs) T, (5.8)

we have f/(0) = —o0, f/(4+00) = 1, then there exists 51 such that f'(rp;) =0, and

— —1-
1) = —[a102Bt Baslran — DI 2 (B +yy - r8) 7

a1 Brrd (1 —a) (BF + i 1) T e
(5.9)
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12 Z. Cao et al.

Then the function f (r2) possesses a minimum at 3, 1.€., f (r21) =Min, 0,400y f (12).
Note f’(r1) = 0, then we have

5 -1 —l—u
L—ajmBi Py} (BT + v -r5)) =0,

or equivalently,

l—ajap

1 ~
1 (B7 +vi-r3t) e = a1008] Box. (5.10)

Taking rp = rp1, then the first inequality in (5.4) holds if y», > f(r21), which is
just condition (5.1). The second inequality holds directly by the choice of R, and it
would remain to prove that rp; < Ry and rig < R;. These inequalities hold for R; big
enough and r; small enough. O

Similarly, we have the following Theorem.

Theorem 5.2 Assume (Hy) and (Hy) are satisfied. If y;" <0, y2, > 0 and
il

—(ﬂik—l-yz*rixf)“l’ (5.1D

Vis =711 — Bls -

where 0 < r11 < 400 is a unique positive solution of the equation

l—ajo ap\ 1+aq A
r By vy ) =105 Bix,

then there exists a positive solution of (1.1).

6 The case y1. <0 < y{, y2. <0< p)

Theorem 6.1 Assume (Hy) and (Hy) are satisfied. If y1» <0 <y, 2« <0 < pJ
and

oo

A rlo
Vs 2710~ Bls = > (6.1
) ECRSZEhE
0%
BT
Vox =120 — Box - o (6.2)

(,B;< + ¥ )2
where 0 < rig < +00 is a unique positive solution of the equation
l—ajar (ﬂ* + * 052)1+a1 _ ,3*,3 (6 3)
ry ) TV "I = 10205 Plx, .

and 0 < ryg < +00 is a unique positive solution of the equation

— 1 N
ry BTy rs) T = i o, (64)
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Proof We follow the same strategy and notation as in the proof of ahead theorem. In
this case, to prove that A : K — K, it is sufficient to find r; < Ry, 2> < R such that

Bl* ﬂik %

—ar V=1, = T vi <R (6.5)

R, )

B B5

R—"Z + Yo 2 12, rTZZ +v < Ry (6.6)
1 1

If we fix R} = ETTI + )/1* , Ry = :?Té; + )/2* , then the first inequality of (6.6) holds if

o satisfies
A ry'*
>g(m):=r— T TR 6.7
V2x = g( 2) 2 /32* (ﬂik + )/1* . rgl)ozz ( )

Following the same calculation as in the proof of (5.7),
€)= 1 — @Bl fourd ™ (B +yf - r) ™7, (6.8)
we have g’(0) = —00, g'(+00) = 1, then there exists 59 such that g’(r29) = 0, and

A~ -2 —1—
g () = —[10a B} Paslonan — D" > (B +yf - r5") %

A -1 —2— —1
+a102Bi By T (=1 —a) (BT + i ry) T Pyfanrst T

> 0. (6.9)

Then the function g(r2) possesses a minimum at 72, i.€., g(20) = Min,¢ (0, +00) 8 (12)-
Note g’(r20) = 0, then we have

rao 1 (BT + vi "'%)lﬂz = 102} Po. (6.10)
Similarly,
\ pri2
Y1k 2 8(r1) :=r1 — Brs - W. (6.11)
g(r10) = miny ¢(0,+00) g(r1), and
o (B + v i) T = caapi s, (6.12)

Taking r1 = r19 and r» = o, then the first inequality in (6.5) and (6.6) hold if
Y1x > g(r10), Y2« > g(ra0), which are just condition (6.1) and (6.2). The second in-
equalities hold directly by the choice of R and R», and it would remain to prove that
r10 < R1 and rp9 < R». This is easily verified through elementary computations.

Q*
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14 Z. Cao et al.
o
_ By
20
N
T~ o
_ ((xlOlZﬂT,BZ*) ez . LoN) ’
- 1
0
4o
5N\ Te— B
= (a102B] Boe) 2 1y 2.
1 _ ey
The proof is the same as that in Ry, Ry = (12 B1s) 71 - r101+a1
Next, we will prove rig < Ry, r9 < R, or equivalently,
I+a; 1
T+a 5 T
riory ¢ < (a1onp o) o2, 613
o | 6.13)
1+a 5 T
rory " < (a1eaB Bre) T
Namely,
I+ay 1+ 5 a1+ A
o et < 1B Bos rag Mg 12 < 1023 Bis. (6.14)
On the other hand,
1 —aja 1+ap 2
ao ! z(ﬂf) < o127 Pos-
Then
ra0 < (e102(B) " Boi) T2 s (6.15)
Similarly
1
oy A L
ri0 < (1 (B3) " Bra) T2 (6.16)
By (6.15) and (6.16),
1
r1+oz2r1+ot1 < (Ot o (ﬁ*)_al,é )%(a o (ﬂ ) ’3 )1 ajay
10 20 102\ Py JES 1021 P 25
Now if we can prove
I+ay o A I+a;
(102(B3) " Brs) 7122 (102 (BF) "2 Bos) T2 < 12 B B, (6.17)

then

1+a2 1+aq * n
10 T <ala2ﬂ1ﬂ2*'

In fact,

14ap ~ ay(l+ap)
ﬁz* T—ajay

B3 ’
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since Bi* < BF, i =1,2. Similarly, we have rzar“‘rll(;raz < a2 Brs, we omit the
details. Now we can obtain rjy < Ry, r20 < R>. The proof is complete. O

As the method of proof is similar, we omitted proof of Theorems 7.1, 7.2, 8.1
and 8.2. We only give the conclusions and theorems.

7 The case y <0, 2. <0 <y, (¥; 20,1 <0 < y)

Theorem 7.1 Assume (Hy) and (Hy) are satisfied. If y;* <0, y2. <0 < y; and

~ 1
1 Pox | T
1—— — , 7.1
2= ( alaz) ["”“2 (ﬂi‘)‘“] 7D
n rf’llaz
Vs 21— Bls - = (7.2)

o
(B3 + ™
where 0 < ri; < +00 is a unique positive solution of the equation

1 ~
TN (B vy ) T = e s (7.3)

then there exists a positive solution of (1.1).

Theorem 7.2 Assume (Hy) and (Hy) are satisfied. If v <0, y1x <0 < y| and

1 ,81* T-ajay ot1°¢2
> 11— —) . |:0610(2 ] , (7.4)
Vi ( ajen (B3~
A rgwtz
Vos =121 — Pos s (7.5)

o
(,31 + Vl* 21 )*2
where 0 < ry1 < +00 is a unique positive solution of the equation
1—aja2 [ px x _ap\l4ar * A
Iy (/31 +yn ) = o102 87 Boxs

then there exists a positive solution of (1.1).

8 The case y1+ >0, Y25 <0 < p5 (72 = 0, y1. <0 < y;)

Theorem 8.1 Assume (H) and (Hy) are satisfied. If y1x > 0, y2. <0 < )/2* and

ooy
Vou =1 — o 2 @.1)
(ﬁl + Y172 )*2

where O < ry < 400 is a unique positive solution of the equation

_ | 3
ry (B rs) T = 10 s (8.2)
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Theorem 8.2 Assume (H;) and (Hy) are satisfied. If y2. > 0, y1. <0 < yl* and

oo

N r12
1+ =72 — Bls ——m—> (8.3)
N R

where 0 < r1p < +00 is a unique positive solution of the equation

l—aja ) 1+ag A
ry B vy r?) =122 B1x,

then there exists a positive solution of (1.1).
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